Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38528134

RESUMO

Although the kappa-opioid receptor (KOR) and its endogenous ligand, dynorphin, are believed to be involved in ethanol drinking, evidence on the direction of their effects has been mixed. The nucleus accumbens (NAc) shell densely expresses KORs, but previous studies have not found KOR activation to influence ethanol drinking. Using microinjections into the NAc shell of male and female Long-Evans rats that drank under the intermittent-access procedure, we found that the KOR agonist, U50,488, had no effect on ethanol drinking when injected into the middle NAc shell, but that it promoted intake in males and high-drinking females in the caudal NAc shell and high-drinking females in the rostral shell, and decreased intake in males and low-drinking females in the rostral shell. Conversely, injection of the KOR antagonist, nor-binaltorphimine, stimulated ethanol drinking in low-drinking females when injected into the rostral NAc shell and decreased drinking in high-drinking females when injected into the caudal NAc shell. These effects of KOR activity were substance-specific, as U50,488 did not affect sucrose intake. Using quantitative real-time PCR, we found that baseline gene expression of the KOR was higher in the rostral compared to caudal NAc shell, but that this was upregulated in the rostral shell with a history of ethanol drinking. Our findings have important clinical implications, demonstrating that KOR stimulation in the NAc shell can affect ethanol drinking, but that this depends on NAc subregion, subject sex, and ethanol intake level, and suggesting that this may be due to differences in KOR expression.

2.
Sci Rep ; 14(1): 6509, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499566

RESUMO

Cocaine disrupts dopamine (DA) and kappa opioid receptor (KOR) system activity, with long-term exposure reducing inhibiton of DA uptake by cocaine and increasing KOR system function. Single treatment therapies have not been successful for cocaine use disorder; therefore, this study focuses on a combination therapy targeting the dopamine transporter (DAT) and KOR. Sprague Dawley rats self-administered 5 days of cocaine (1.5 mg/kg/inf, max 40 inf/day, FR1), followed by 14 days on a progressive ratio (PR) schedule (0.19 mg/kg/infusion). Behavioral effects of individual and combined administration of phenmetrazine and nBNI were then examined using PR. Additionally, ex vivo fast scan cyclic voltammetry was then used to assess alterations in DA and KOR system activity in the nucleus accumbens before and after treatments. Chronic administration of phenmetrazine as well as the combination of phenmetrazine and nBNI-but not nBNI alone-significantly reduced PR breakpoints. In addition, the combination of phenmetrazine and nBNI partially reversed cocaine-induced neurodysregulations of the KOR and DA systems, indicating therapeutic benefits of targeting the DA and KOR systems in tandem. These data highlight the potential benefits of the DAT and KOR as dual-cellular targets to reduce motivation to administer cocaine and reverse cocaine-induced alterations of the DA system.


Assuntos
Cocaína , Receptores Opioides kappa , Ratos , Animais , Receptores Opioides kappa/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Motivação , Dopamina/farmacologia , Ratos Sprague-Dawley , Fenmetrazina/farmacologia , Cocaína/farmacologia , Núcleo Accumbens/metabolismo , Autoadministração
3.
Pain ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962155

RESUMO

ABSTRACT: Excessive alcohol consumption in adolescence can disrupt neural development and may augment pain perception. Recent studies have shown that the nucleus accumbens (NAc) shell is involved in mediating pain sensitivity after peripheral inflammation in rodent models of chronic pain and alcohol use disorder. Interestingly, there have been very few studies examining the impact of chronic ethanol exposure during adolescence on pain sensitivity in adulthood. Therefore, in this project, we investigated the impact of adolescent chronic intermittent ethanol (aCIE) exposure on mechanical allodynia. Furthermore, given the involvement of the NAc shell in pain processing and chronic ethanol-mediated changes, we measured changes in accumbal dopamine kinetics during protracted withdrawal. We found that both male and female aCIE rats show mechanical allodynia during withdrawal. Furthermore, male and female aCIE rats show greater evoked tonic dopamine release, maximal rate of dopamine reuptake, and dopamine affinity to the dopamine transporter in the NAc shell compared with controls. With phasic stimulation, aCIE rats also showed greater dopamine release compared with AIR-exposed rats. Inhibition of dopamine transmission targeted in the NAc shell reversed the aCIE-associated facilitation of mechanical allodynia in both sexes. These data suggest that aCIE exposure exacerbates pain sensitivity during withdrawal in an accumbal dopamine-dependent manner.

4.
Basic Clin Pharmacol Toxicol ; 133(5): 526-534, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37539456

RESUMO

The nucleus accumbens (NAc) core is involved in regulating stress and shaping reward seeking behaviours. Multiple neuromodulators, including dynorphin/kappa opioid receptor (KOR) and dopamine systems, converge in this area to influence behavioural outcomes. KOR activation acutely inhibits dopamine release and chronically depresses overall dopamine transmission. Recently, studies in the NAc shell have revealed that the impact of KOR activation on behaviour is regionally specific, and these rostro-caudal differences are likely driven by greater control of KORs over dopamine inhibition in the caudal compared with rostral subregion. Given the importance of NAc core, particularly the interaction between KORs and dopamine in regulating reward seeking behaviours, we examined the impact of KOR activation on dopamine release and uptake along the rostro-caudal axis in the NAc core of male and female mice. Using ex vivo fast scan cyclic voltammetry, we observed that KOR mediated inhibition of dopamine release was significantly greater in caudal compared with rostral NAc core with no significant sex differences observed. These data suggest that KORs regulate dopamine release differentially along the rostro-caudal axis, providing a new axis on which to examine the process by which the KOR/dopamine system controls reward encoding.


Assuntos
Núcleo Accumbens , Receptores Opioides kappa , Camundongos , Feminino , Masculino , Animais , Dopamina
5.
Alcohol Clin Exp Res (Hoboken) ; 47(6): 1027-1038, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37042026

RESUMO

The dynorphin (DYN)/kappa opioid receptor (KOR) system has increasingly been investigated as a possible pharmacotherapeutic target for alcohol use disorder, but findings on the direction of its effects have been mixed. Activation of KORs by DYN has been shown to elicit dysphoric effects, and the DYN/KOR system has canonically been considered particularly important in driving alcohol intake through negative reinforcement in dependent states. However, this review also highlights its activity in opposing the positive reinforcement that drives alcohol intake at earlier stages. Both DYN and KORs are concentrated in the extended amygdala, a set of interconnected regions that includes the bed nucleus of the stria terminalis, central nucleus of the amygdala, and nucleus accumbens shell. This review focuses on the role of the DYN/KOR system in the extended amygdala in ethanol use. It begins by examining the effects of ethanol on the expression of DYN/KOR in the extended amygdala, expression of DYN/KOR in alcohol-preferring and alcohol-avoiding animals, and the effects of knocking out DYN/KOR genes on ethanol intake. Then, it examines the effects on ethanol use in both dependent and nondependent states from systemic pharmacological manipulations of DYN/KOR and from specific manipulation of this system in regions of the extended amygdala. We propose that greater expression and binding of DYN/KOR, by reducing the positive reinforcement that drives early stages of intake, initially acts to prevent the escalation of ethanol drinking. However, prolonged, binge-like, or intermittent ethanol intake enhances levels of DYN/KOR in the extended amygdala such that the system ultimately facilitates the negative reinforcement that drives later stages of ethanol drinking. This review highlights the potential of the DYN/KOR system as a target that can affect different outcomes across different stages of ethanol drinking and the development of alcohol use disorder.

6.
Alcohol Clin Exp Res ; 46(7): 1282-1293, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491472

RESUMO

BACKGROUND: While men in the United States consume more alcohol than women, rates of drinking are converging. Nevertheless, females remain underrepresented in preclinical alcohol research. Here, we examined rats' sex-related differences in patterns of ethanol (EtOH) drinking and the effects of this drinking on exploratory and anxiety-like behavior. METHODS: Adult male and female Long-Evans rats were given 20% ethanol under the intermittent-access two-bottle-choice paradigm. Their intake was measured daily for the first 7 weeks. During the eighth week, intake was measured over the 24 h of daily access. During the ninth week, they, along with EtOH-naive controls, were tested prior to daily access in a novel chamber, light-dark box, and hole board apparatus. During the tenth week, blood ethanol concentration (BEC) was assessed after 30 to 40 min of access. RESULTS: Females overall demonstrated higher ethanol intake and preference across all access weeks than males, although only half of females drank significantly more than males. Across 24 h of daily access, both sexes had their highest intake in the first 30 min and their lowest in the middle of the light phase of the light/dark cycle. Despite their greater ethanol intake, females did not show significantly different BECs than males. In behavioral tests, females showed less vertical time in a novel activity chamber, more movement between chambers in a light-dark box, and more nose pokes in a hole-board apparatus than males. While a history of ethanol drinking led to a trend for lower vertical time in the activity chamber and greater chamber entries in the light-dark box, the effects were not sex-dependent. CONCLUSIONS: These results suggest that female and male rats could both be tested for acute effects of ethanol after 30 min of daily access, but that nuanced considerations are needed in the design of these experiments and the interpretation of their findings.


Assuntos
Consumo de Bebidas Alcoólicas , Caracteres Sexuais , Animais , Ansiedade , Etanol/farmacologia , Feminino , Humanos , Masculino , Ratos , Ratos Long-Evans
7.
J Neurosci ; 42(20): 4116-4130, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35410881

RESUMO

Neurons in posterior parietal cortex (PPC) encode many aspects of the sensory world (e.g., scene structure), the posture of the body, and plans for action. For a downstream computation, however, only some of these dimensions are relevant; the rest are "nuisance variables" because their influence on neural activity changes with sensory and behavioral context, potentially corrupting the read-out of relevant information. Here we show that a key postural variable for vision (eye position) is represented robustly in male macaque PPC across a range of contexts, although the tuning of single neurons depended strongly on context. Contexts were defined by different stages of a visually guided reaching task, including (1) a visually sparse epoch, (2) a visually rich epoch, (3) a "go" epoch in which the reach was cued, and (4) during the reach itself. Eye position was constant within trials but varied across trials in a 3 × 3 grid spanning 24° × 24°. Using demixed principal component analysis of neural spike-counts, we found that the subspace of the population response encoding eye position is orthogonal to that encoding task context. Accordingly, a context-naive (fixed-parameter) decoder was nevertheless able to estimate eye position reliably across contexts. Errors were small given the sample size (∼1.78°) and would likely be even smaller with larger populations. Moreover, they were comparable to that of decoders that were optimized for each context. Our results suggest that population codes in PPC shield encoded signals from crosstalk to support robust sensorimotor transformations across contexts.SIGNIFICANCE STATEMENT Neurons in posterior parietal cortex (PPC) which are sensitive to gaze direction are thought to play a key role in spatial perception and behavior (e.g., reaching, navigation), and provide a potential substrate for brain-controlled prosthetics. Many, however, change their tuning under different sensory and behavioral contexts, raising the prospect that they provide unreliable representations of egocentric space. Here, we analyze the structure of encoding dimensions for gaze direction and context in PPC during different stages of a visually guided reaching task. We use demixed dimensionality reduction and decoding techniques to show that the coding of gaze direction in PPC is mostly invariant to context. This suggests that PPC can provide reliable spatial information across sensory and behavioral contexts.


Assuntos
Lobo Parietal , Desempenho Psicomotor , Animais , Macaca , Masculino , Neurônios/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia
8.
Handb Exp Pharmacol ; 271: 351-377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33301050

RESUMO

Drug addiction is a complex, persistent, and chronically relapsing neurological disorder exacerbated by acute and chronic stress. It is well known that the dynorphin/kappa opioid receptor (KOR) system regulates stress perception and responsivity, while the mesolimbic dopamine system plays a role in reward and reinforcement associated with alcohol and substance use disorders. Interestingly, the dopamine and dynorphin/KOR systems are highly integrated in mesolimbic areas, with KOR activation leading to inhibition of dopamine release, further altering the perception of reinforcing and aversive stimuli. Chronic or repeated exposure to stress or drugs potentiates KOR function ultimately contributing to a hypodopaminergic state. This hypodopaminergic state is one of the hallmarks of hyperkatifeia, defined as the hypersensitivity to emotional distress that is exacerbated during drug withdrawal and abstinence. The relationship between stress and drug addiction is bidirectional; repeated/chronic stress promotes pro-addictive behaviors, and repeated cycles of drug exposure and withdrawal, across various drug classes, produces stress. Neuroadaptations driven by this bidirectional relationship ultimately influence the perception of the reinforcing value of rewarding stimuli. In this chapter, we address the involvement of the dopamine and dynorphin/KOR systems and their interactions in shaping reinforcement value processing after drug and stress exposure, as well as a combinatorial impact of both drugs and stress.


Assuntos
Comportamento Aditivo , Receptores Opioides kappa , Dopamina , Dinorfinas , Humanos , Recompensa
9.
Front Behav Neurosci ; 15: 725856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744651

RESUMO

While a bidirectional positive link between palatable food intake and alcohol drinking has been suggested, several rodents studies report reduced alcohol drinking following palatable diets exposure. These studies utilized purified rodents' diets high in sugar/fat; however, the effects of hyper-palatable food (HPF) rich in fat and sugar on alcohol drinking remain unclear. Furthermore, neural substrates involved in HPF-mediated changes in alcohol consumption are poorly understood. Therefore, the present study evaluated the effects of patterned feeding of a hyper-palatable food (Oreo cookies) on alcohol drinking as well as dopamine (DA) and serotonin (5-HT) content in rat's mesocorticolimbic (medial-prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens) circuitry. Male Long Evans rats received 8-weeks of intermittent (Mon, Tue, Wed) Oreo cookies access, which induced a patterned feeding, in which rats in the Oreo group overconsumed calories on HPF days whereas underconsumption was observed on chow only (Thu, Fri) days. Following HPF exposure, alcohol consumption was evaluated while patterned feeding continued. Alcohol intake in the Oreo group was significantly lower as compared to the chow controls. However, alcohol intake in the Oreo group increased to the levels seen in the group receiving chow following the suspension of patterned HPF feeding. Finally, DA levels in the nucleus accumbens were significantly greater, whereas its metabolite (DOPAC) levels were lower in the Oreo group compared to the chow controls. Surprisingly, 5-HT levels remained unaltered in all tested brain areas. Together, these data suggest that HPF-associated increased DA availability and reduced DA turnover within mesocorticolimbic circuitry may regulate alcohol drinking following patterned HPF feeding.

10.
Neuropharmacology ; 181: 108341, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33011200

RESUMO

Neural circuit engagement within the nucleus accumbens (NAc) shell is implicated in the regulation of both negative and positive affect. Classically, the dynorphin/kappa opioid receptor (KOR) system in the NAc was believed to promote aversion, while dopamine was viewed as interacting with reward behavior, and KOR activation was known to inhibit dopamine release. Recently, however, both the KOR and dopamine systems have, separately, been shown to have differential effects across the rostro-caudal axis of the NAc shell on hedonic responses. Whether or not this is due to interactions between KORs and dopamine, and if it extends to anxiety-like or approach-avoidance behaviors, remains to be determined. In this study, we examined in rats the relationship between the KOR and dopamine systems in both the rostral and caudal NAc shell using ex vivo fast scan cyclic voltammetry and the impact of KOR activation on affective behavior using exploration-based tasks. We report here that activation of KORs in the caudal NAc shell significantly inhibits dopamine release, stimulates rearing behavior in a novel environment, increases anxiety-like or avoidance behavior, and reduces locomotor activity. In contrast, activation of KORs in the rostral NAc shell inhibits dopamine release to a lesser extent and instead reduces anxiety-like behavior or increases approach behavior. Taken together, these results indicate that there is heterogeneity across the rostro-caudal axis of the NAc shell in the effects of KOR stimulation on affective behaviors, and they suggest that this might be due to differences in KOR control over dopamine release.


Assuntos
Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Receptores Opioides kappa/efeitos dos fármacos , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Afeto , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/patologia , Dinorfinas/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Long-Evans , Recompensa
11.
Brain Sci ; 10(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717830

RESUMO

Underage alcohol drinking increases the risk of developing alcohol use disorder (AUD). In rodents, adolescent ethanol exposure augments ethanol consumption and anxiety-like behavior while reducing social interaction. However, the underlying mechanisms driving these adaptations are unclear. The dopamine and kappa opioid receptor (KOR) systems in the nucleus accumbens (NAc) are implicated in affective disorders, including AUD, with studies showing augmented KOR function and reduced dopamine transmission in ethanol-dependent adult animals. Thus, here we examine the impact of adolescent intermittent ethanol (AIE) exposure on dopamine transmission and KOR function in the NAc. Rats were exposed to water or ethanol (4 g/kg, intragastrically) every other day during early (postnatal day (PD) 25-45) or late (PD 45-65) adolescence. While AIE exposure during early adolescence (early-AIE) did not alter dopamine release in male and female rats, AIE exposure during late adolescence (late-AIE) resulted in greater dopamine release in males and lower dopamine release in females. To determine the impact of AIE on KOR function, we measured the effect of KOR activation using U50,488 (0.01-1.00 µM) on dopamine release. Early-AIE exposure potentiated KOR-mediated inhibition of dopamine release in females, while late-AIE exposure attenuated this effect in males. Interestingly, no differences in KOR function were observed in early-AIE exposed males and late-AIE exposed females. Together, these data suggest that AIE exposure impact on neural processes is dependent on sex and exposure timing. These differences likely arise from differential developmental timing in males and females. This is the first study to show changes in KOR function following AIE exposure.

12.
Brain Res ; 1735: 146742, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32114059

RESUMO

The dynorphin / kappa opioid receptor (KOR) system has been implicated in many aspects that influence neuropsychiatric disorders. Namely, this system modulates neural circuits that primarily regulate reward seeking, motivation processing, stress responsivity, and pain sensitivity, thus affecting the development of substance and alcohol use disorder (AUD). The effects of this system are often bidirectional and depend on projection targets. To date, a majority of the studies focusing on this system have examined the KOR function using agonists and antagonists. Indeed, there are studies that have examined prodynorphin and dynorphin levels by measuring mRNA and tissue content levels; however, static levels of the neuropeptide and its precursor do not explain complete and online function of the peptide as would be explained by measuring dynorphin transmission in real time. New and exciting methods using optogenetics, chemogenetics, genetic sensors, fast scan cyclic voltammetry are now being developed to detect various neuropeptides with a focus on opioid peptides, including dynorphin. In this review we discuss studies that examine dynorphin projections in areas involved in AUD, its functional involvement in AUD and vulnerability to develop AUD at various ages. Moreover, we discuss dynorphin's role in promoting AUD by dysregulation motivation circuits and how advancements in opioid peptide detection will further our understanding.


Assuntos
Alcoolismo/tratamento farmacológico , Dinorfinas/farmacologia , Dinorfinas/uso terapêutico , Alcoolismo/metabolismo , Animais , Dinorfinas/metabolismo , Humanos , Motivação/efeitos dos fármacos , Neuropeptídeos/análise , Neuropeptídeos/química , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides kappa/fisiologia , Recompensa
13.
Neurochem Int ; 129: 104504, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301327

RESUMO

Neural circuits that enable an organism to protect itself by promoting escape from immediate threat and avoidance of future injury are conceptualized to carry an "aversive" signal. One of the key molecular elements of these circuits is the kappa opioid receptor (KOR) and its endogenous peptide agonist, dynorphin. In many cases, the aversive response to an experimental manipulation can be eliminated by selective blockade of KOR function, indicating its necessity in transmitting this signal. The dopamine system, through its contributions to reinforcement learning, is also involved in processing of aversive stimuli, and KOR control of dopamine in the context of aversive behavioral states has been intensely studied. In this review, we have discussed the multiple ways in which the KORs regulate dopamine dynamics with a central focus on dopamine neurons and projections from the ventral tegmental area. At the neuronal level, KOR agonists inhibit dopamine neurons both in the somatodendritic region as well as at terminal release sites, through various signaling pathways and ion channels, and these effects are specific to different synaptic sites. While the dominant hypotheses are that aversive states are driven by decreases in dopamine and increases in dynorphin, reported exceptions to these patterns indicate these ideas require refinement. This is critical given that KOR is being considered as a target for development of new therapeutics for anxiety, depression, pain, and other psychiatric disorders.


Assuntos
Aprendizagem da Esquiva/fisiologia , Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Receptores Opioides kappa/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Dinorfinas/fisiologia , Previsões , Aprendizagem/fisiologia , Núcleo Accumbens/metabolismo , Punição , Reforço Psicológico , Transdução de Sinais/fisiologia , Área Tegmentar Ventral/metabolismo
14.
ACS Chem Neurosci ; 10(4): 2033-2044, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30284806

RESUMO

Chronic peri-adolescent stress in humans increases risk to develop a substance use disorder during adulthood. Rats reared in social isolation during peri-adolescence (aSI; 1 rat/cage) period show greater ethanol and cocaine intake compared to group housed (aGH; 4 rats/cage) rats. In addition, aSI rats have a heightened dopamine response in the nucleus accumbens (NAc) to rewarding and aversive stimuli. Furthermore, single pulse electrical stimulation in slices containing NAc core elicits greater dopamine release in aSI rats. Here, we further investigated dopamine release kinetics and machinery following aSI. Dopamine release, across a wide range of stimulation intensities and frequencies, was significantly greater in aSI rats. Interestingly, subthreshold intensity stimulations also resulted in measurable dopamine release in accumbal slices from aSI but not aGH rats. Extracellular [Ca2+] manipulations revealed augmented calcium sensitivity of dopamine release in aSI rats. The readily releasable pools of dopamine, examined by bath application of Ro-04-1284/000, a vesicular monoamine transporter 2 (VMAT2) inhibitor, were depleted faster in aGH rats. Western blot analysis of release machinery proteins (VMAT2, Synaptogyrin-3, Syntaxin-1, and Munc13-3) showed no difference between the two groups. Tyrosine hydroxylase (TH) protein expression levels, however, were elevated in aSI rats. The greater dopamine release could potentially be explained by higher levels of TH, the rate-limiting step for dopamine synthesis. This augmented responsivity of the dopamine system and heightened dopamine availability post-aSI may lead to an increased risk of addiction vulnerability.


Assuntos
Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Terminações Pré-Sinápticas/metabolismo , Isolamento Social , Estresse Psicológico/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Fatores Etários , Animais , Doença Crônica , Inibidores da Captação de Dopamina/farmacologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Long-Evans , Isolamento Social/psicologia , Estresse Psicológico/psicologia , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores
15.
Handb Exp Pharmacol ; 248: 213-238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675581

RESUMO

Alcohol use disorders are a leading public health concern, engendering enormous costs in terms of both economic loss and human suffering. These disorders are characterized by compulsive and excessive alcohol use, as well as negative affect and alcohol craving during abstinence. Extensive research has implicated the dopamine system in both the acute pharmacological effects of alcohol and the symptomology of alcohol use disorders that develop after extended alcohol use. Preclinical research has shed light on many mechanisms by which chronic alcohol exposure dysregulates the dopamine system. However, many of the findings are inconsistent across experimental parameters such as alcohol exposure length, route of administration, and model organism. We propose that the dopaminergic alterations driving the core symptomology of alcohol use disorders are likely to be relatively stable across experimental settings. Recent work has been aimed at using multiple model organisms (mouse, rat, monkey) across various alcohol exposure procedures to search for commonalities. Here, we review recent advances in our understanding of the effects of chronic alcohol use on the dopamine system by highlighting findings that are consistent across experimental setting and species.


Assuntos
Alcoolismo/fisiopatologia , Dopamina , Etanol/farmacologia , Consumo de Bebidas Alcoólicas , Animais , Humanos , Camundongos , Ratos
16.
Int J Mol Sci ; 17(8)2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27472317

RESUMO

The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.


Assuntos
Dopamina/metabolismo , Etanol/administração & dosagem , Naltrexona/análogos & derivados , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/farmacologia , Núcleo Accumbens/efeitos dos fármacos
17.
Neuropharmacology ; 110(Pt A): 190-197, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27450094

RESUMO

Acute ethanol exposure is known to stimulate the dopamine system; however, chronic exposure has been shown to downregulate the dopamine system. In rodents, chronic intermittent exposure (CIE) to ethanol also increases negative affect during withdrawal, such as, increases in anxiety- and depressive-like behavior. Moreover, CIE exposure results in increased ethanol drinking and preference during withdrawal. Previous literature documents reductions in CIE-induced anxiety-, depressive-like behaviors and ethanol intake in response to kappa opioid receptor (KOR) blockade. KORs are located on presynaptic dopamine terminals in the nucleus accumbens (NAc) and inhibit release, an effect which has been linked to negative affective behaviors. Previous reports show an upregulation in KOR function following extended CIE exposure; however it is not clear whether there is a direct link between KOR upregulation and dopamine downregulation during withdrawal from CIE. This study aimed to examine the effects of KOR modulation on dopamine responses to ethanol of behaving mice exposed to air or ethanol vapor in a repeated intermittent pattern. First, we showed that KORs have a greater response to an agonist after moderate CIE compared to air exposed mice using ex vivo fast scan cyclic voltammetry. Second, using in vivo microdialysis, we showed that, in contrast to the expected increase in extracellular levels of dopamine following an acute ethanol challenge in air exposed mice, CIE exposed mice exhibited a robust decrease in dopamine levels. Third, we showed that blockade of KORs reversed the aberrant inhibitory dopamine response to ethanol in CIE exposed mice while not affecting the air exposed mice demonstrating that inhibition of KORs "rescued" dopamine responses in CIE exposed mice. Taken together, these findings indicate that augmentation of dynorphin/KOR system activity drives the reduction in stimulated (electrical and ethanol) dopamine release in the NAc. Thus, blockade of KORs is a promising avenue for developing pharmacotherapies for alcoholism.


Assuntos
Dopamina/metabolismo , Regulação para Baixo/fisiologia , Etanol/administração & dosagem , Receptores Opioides kappa/fisiologia , Regulação para Cima/fisiologia , Animais , Benzenoacetamidas/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Pirrolidinas/farmacologia , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos
18.
Drug Alcohol Depend ; 166: 51-60, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27394931

RESUMO

BACKGROUND: The US Food and Drug Administration has not approved a treatment for cocaine addiction, possibly due in part to the fact that repeated cocaine use results in dysregulation of multiple neurotransmitter systems, including glutamate and dopamine, and an emergence of increased negative affective states and heightening motivation to take cocaine despite negative consequences. We used a combination therapy approach to assess whether modulation of both glutamate and dopamine transmission would reduce the motivation to self- administer cocaine compared to modulation of either system alone. METHODS: The metabotropic glutamate 2/3 receptor agonist, LY379268, and the monoamine releaser, phenmetrazine, were used to assess their individual and combined ability to decrease the reinforcing efficacy of cocaine because they modulate glutamate and dopamine levels, respectively. Cocaine breakpoints and cocaine intake was assessed, using a progressive ratio schedule, at baseline in three groups based on dose of cocaine (0.19, 0.38, 0.75mg/kg/infusion), and following LY379268 (0.03 or 0.30mg/kg; i.p.), phenmetrazine (25mg/kg/day; osmotic minipump), and a combination of the two drugs. RESULTS: LY379268 and phenmetrazine alone reduced breakpoints for all doses of cocaine. The combination of the two drugs showed a concerted effect in reducing breakpoints for all doses of cocaine, with the lowest dose of cocaine reduced by as much as 70%. CONCLUSIONS: These data support combination therapy of dopamine and glutamate systems as an effective means to reduce the motivation to take cocaine since a combination of drugs can address neurobiological dysfunction in multiple neurotransmitter systems compared to therapies using single drugs.


Assuntos
Aminoácidos/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Cocaína/administração & dosagem , Motivação/efeitos dos fármacos , Fenmetrazina/administração & dosagem , Receptores de Glutamato Metabotrópico/agonistas , Animais , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/psicologia , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Masculino , Motivação/fisiologia , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Autoadministração
19.
Alcohol Clin Exp Res ; 40(6): 1202-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27154240

RESUMO

Individuals diagnosed with anxiety-related illnesses are at increased risk of developing alcoholism, exhibit a telescoped progression of this disease and fare worse in recovery, relative to alcoholics that do not suffer from a comorbid anxiety disorder. Similarly, preclinical evidence supports the notion that stress and anxiety represent major risk factors for the development of alcohol use disorder (AUD). Despite the importance of understanding the link between anxiety and alcoholism, much remains unknown about the neurobiological substrates underlying this relationship. One stumbling block has been the lack of animal models that reliably reproduce the spectrum of behaviors associated with increased vulnerability to these diseases. Here, we review the literature that has examined the behavioral and neurobiological outcomes of a simple rodent adolescent social isolation procedure and discuss its validity as a model of vulnerability to comorbid anxiety disorders and alcoholism. Recent studies have provided strong evidence that adolescent social isolation of male rats leads to the expression of a variety of behaviors linked with increased vulnerability to anxiety and/or AUD, including deficits in sensory gating and fear extinction, and increases in anxiety measures and ethanol drinking. Neurobiological studies are beginning to identify mesolimbic adaptations that may contribute to the behavioral phenotype engendered by this model. Some of these changes include increased excitability of ventral tegmental area dopamine neurons and pyramidal cells in the basolateral amygdala and significant alterations in baseline and stimulated catecholamine signaling. A growing body of evidence suggests that adolescent social isolation may represent a reliable rodent model of heightened vulnerability to anxiety disorders and alcoholism in male rats. These studies provide initial support for the face, construct, and predictive validity of this model and highlight its utility in identifying neurobiological adaptations associated with increased risk of developing these disorders.


Assuntos
Alcoolismo/epidemiologia , Alcoolismo/fisiopatologia , Transtornos de Ansiedade/epidemiologia , Encéfalo/fisiologia , Isolamento Social/psicologia , Alcoolismo/psicologia , Animais , Transtornos de Ansiedade/psicologia , Comorbidade , Modelos Animais de Doenças , Humanos
20.
Neuropsychopharmacology ; 41(9): 2263-74, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26860203

RESUMO

Chronic early-life stress increases vulnerability to alcoholism and anxiety disorders during adulthood. Similarly, rats reared in social isolation (SI) during adolescence exhibit augmented ethanol intake and anxiety-like behaviors compared with group housed (GH) rats. Prior studies suggest that disruption of dopamine (DA) signaling contributes to SI-associated behaviors, although the mechanisms underlying these alterations are not fully understood. Kappa opioid receptors (KORs) have an important role in regulating mesolimbic DA signaling, and other kinds of stressors have been shown to augment KOR function. Therefore, we tested the hypothesis that SI-induced increases in KOR function contribute to the dysregulation of NAc DA and the escalation in ethanol intake associated with SI. Our ex vivo voltammetry experiments showed that the inhibitory effects of the kappa agonist U50,488 on DA release were significantly enhanced in the NAc core and shell of SI rats. Dynorphin levels in NAc tissue were observed to be lower in SI rats. Microdialysis in freely moving rats revealed that SI was also associated with reduced baseline DA levels, and pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI) increased DA levels selectively in SI subjects. Acute ethanol elevated DA in SI and GH rats and nor-BNI pretreatment augmented this effect in SI subjects, while having no effect on ethanol-stimulated DA release in GH rats. Together, these data suggest that KORs may have increased responsiveness following SI, which could lead to hypodopaminergia and contribute to an increased drive to consume ethanol. Indeed, SI rats exhibited greater ethanol intake and preference and KOR blockade selectively attenuated ethanol intake in SI rats. Collectively, the findings that nor-BNI reversed SI-mediated hypodopaminergic state and escalated ethanol intake suggest that KOR antagonists may represent a promising therapeutic strategy for the treatment of alcohol use disorders, particularly in cases linked to chronic early-life stress.


Assuntos
Dopamina/metabolismo , Etanol/administração & dosagem , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Isolamento Social , Estresse Psicológico , Animais , Masculino , Naltrexona/análogos & derivados , Núcleo Accumbens/efeitos dos fármacos , Ratos Long-Evans , Receptores Opioides kappa/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...